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Abstract

Numerical and analytical investigations of the hydraulic fracture propagation problem, from a cased and cemented

wellbore, have been pursued in this communication. A two-dimensional plane model has been used. Pure bond and

pure slip boundary conditions, along the steel/cement and the cement/rock interfaces have been implemented, as two

extreme cases. Both the in-plane and the anti-plane problems have been considered. Analytical and numerical methods

have been applied to the problem of a straight fracture, while in the curved crack case only a numerical solution has

been adopted. Crack turning is found to depend on the elastic properties of the rock in the pure bond case, while in the

pure slip case no turning occurs. Results indicate that in the pure slip case, a larger pressure than that of the pure bond

case, is required at the first propagation step. Results related to a starter (i.e. at the first propagation step) crack lying

parallel to the plane of the maximum remote principal stress while the elastic modulus of the rock varies, indicate that

bigger values, for both the pressure and the mode I crack opening displacement (COD) at the open hole, develop in the

pure slip case than in the pure bond case. Results concerning a starter crack, inclined at varying angles with respect to

the plane of the maximum remote principal stress, show that the mode II COD at the open hole is bigger in the pure

bond case than in the pure slip case, for all the angles of inclination. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Deviated wells are increasingly used in oil recovery. Multi-directional drilling can thus be pursued from
a single platform and also particular reservoirs and rocks, whose geometry and properties are highly ori-
entation dependent, can be treated more efficiently. Hydraulic fracturing is however often problematic
when initiated from an inclined wellbore. In that case the state of stresses near the well changes and the
prediction of the fracture surface is not immediately attainable. The turning and twisting of the crack is
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often coupled with the generation of multiple fractures. The fracturing fluid advance can thus be severely
impeded and this may lead to an early screen out, i.e. inadvertent plugging of the well with the granular
substance carried by the fracturing fluid.

The fracturing process becomes more complicated when the wellbore is cased and cemented, since this
imposes a new stress situation around the well. It has been observed that the crack may initially extend
along the cement/rock interface before entering the rock itself. New stress concentrations are also induced
at the tips of perforations which may change the preferable plane for fracture initiation.

Yew and Li (1987) and Yew et al. (1989) have applied 3D elasticity theory in order to study hydraulically
induced fractures from inclined wellbores. The growth and link up of mini cracks initiated at the perfo-
rations of a cased wellbore, are investigated by Yew et al. (1993). A 3D analysis of the fracturing process
from an inclined well, via the use of a numerical simulator, has been presented by Morales and Brady
(1993). The initiation, interaction and propagation of fractures from a deviated well have been studied by
Weng (1993). The effect of casing on the hydraulic fracture have been considered by Carter et al. (1994).
Romero et al. (1995) have investigated several near wellbore effects like fracture reorientation, perfora-
tion phasing misalignment, perforation pressure drop etc. Atkinson and Thiercelin (1993) have studied
the interaction between an open hole and pressure induced fractures of mode I. Eftaxiopoulos and
Atkinson (1996) studied numerically a plane model of hydraulic fracture propagation from a cased, ce-
mented and inclined wellbore, considering perfect bond between the steel/cement and the cement–rock
interfaces.

In this study, the crack propagation from a cased, cemented and inclined wellbore is considered by using
two-dimensional (2D) in-plane and anti-plane elasticity analysis. Thus, all the three modes of crack opening
displacements (CODs), i.e. tensile, in-plane shear and out-of-plane shear, are incorporated. The pressure is
kept constant along the crack. The path of the crack is determined by the maximum normal stress criterion,
applied ahead of the crack tip. Two extreme cases of boundary conditions along the steel/cement and the
cement/rock interfaces are considered. Perfect bond where continuity of stresses and displacements is im-
plied and perfect slip where zero shear stress and continuity of normal stresses and displacements are
considered. For the sake of simplicity, we consider that the crack lies in an infinite medium, loaded by the
stresses calculated by Atkinson and Eftaxiopoulos (1996) for the perfect bond case or the field calculated in
Sections 2.2.1 and 2.2.2 of this work, for the perfect slip case. When the crack is curved (in the perfect bond
case for rocks with low elasticity modulus), a numerical method is used for the solution of a system of
integral equations at each propagation step. When the fracture is straight, both a numerical and an ana-
lytical solution are possible and a comparison of the corresponding results is made.

The optimum initial crack orientation is determined by the stress field along the cement/rock interface,
which in turn depends on the elastic properties of the rock, as far as the perfect bond case is concerned
(Atkinson and Eftaxiopoulos, 1996). In fact, the starter fracture is found to lie either at 90� or at 0� with
respect to plane of the maximum remote stress rh (see Fig. 1).

In the perfect slip case, results indicate that the plane of the maximum tangential stress along the cement/
rock interface, is always parallel to the plane of the maximum remote stress rh and independent of the rock
elastic properties. Mode I and III CODs are more severe close to the well in the straight crack case and
around the middle of the crack in the curved fracture case. In the curved crack instance, the mode II COD is
more intense close to the well. The presence of the casing and the cement leads to the reduction of the CODs
of all modes near the wellbore, as expected. A larger pressure is required at the first propagation step in the
pure slip case, than that in the pure bond case. Mode I opening and mode III sliding displacements along
a straight crack at the final propagation step, remain virtually unaltered when the boundary conditions
around the wellbore change from pure bond to pure slip.

Results related to a starter crack lying parallel to the plane of the maximum remote principal stress while
the elastic modulus of the rock varies, indicate that bigger values, for both the pressure and the mode I
COD at the open hole, develop in the pure slip case than in the pure bond case. The mode III COD at
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r ¼ R1 increases with increasing Eð3Þ, possibly indicating a more severe tendency for twist of the fracture in
stiffer rocks.

Results concerning a starter crack, inclined at varying angles with respect to the plane of the maximum
remote principal stress while the elastic modulus of the rock remains constant, show that the pressure is
greater for the pure slip case than for the pure bond one, for inclinations smaller than roughly 45�, while the
opposite happens for inclinations bigger than roughly 45�. Also the mode I COD decreases as the starter
crack rotates, approaching the plane of the minimum remote stress, while values for the pure slip case are
generally bigger than those for the pure bond case. The mode II COD at the open hole is bigger in the pure
bond case than in the pure slip case, for all the angles of inclination. Changing signs in the variation of the
mode III COD at the open hole may point to different angles of twist of a real 3D crack.

2. The stress field around a cased and cemented wellbore

We consider a planar cross-section of the cased and cemented wellbore, in the state of plane strain, as
shown in Fig. 1. The fracture is initially absent. In the far field, in-plane principal stresses rH and rh are

Fig. 1. A plane cross-section of a fractured inclined, cased and cemented wellbore, remotely loaded by in-plane and anti-plane stresses.
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applied, with the latter having a smaller absolute value than the former. Remote anti-plane stresses r1
13 and

r1
23 are also considered, for the case of an inclined wellbore to be simulated. The radii of the open hole, the

steel/cement interface and the cement/rock interface are R1, R2 and R3 respectively. Internal pressure p is
applied on the steel annulus internally. Both a Cartesian coordinate system Oðx1; x2Þ and a polar coordinate
system Oðr; hÞ (see Fig. 1) are used. Superscripts ð1Þ, ð2Þ, ð3Þ refer to the steel, the cement and the rock
respectively. l is the shear modulus and m is the Poisson’s ratio.

Two cases have been considered, for the interfaces along the steel/cement and the cement/rock annuli.
The perfect bond condition where there is continuity of stresses and displacements along the interfaces and
the perfect slip condition where there is continuity of normal stresses and normal displacements, but the
shear stress is zero along these interfaces. Neither of these two conditions is realistic, since the situation on
the interfaces may be more complicated (e.g. friction may develop). However, these two extreme boundary
conditions, provide two bounds for the actual stress situation around the wellbore.

2.1. Perfect bond at the steel/cement and cement/rock interfaces

The stress field for the perfect bond case has been evaluated by Atkinson and Eftaxiopoulos (1996), for
both the in-plane and the anti-plane problems. In that article, results indicated that the plane of the
maximum tangential stress rhh, along the steel/cement and the cement/rock interfaces, may rotate at 90�
with respect to the plane of the maximum remote stress rh, depending on the value of the Young’s modulus
of the rock. Such a rotation will force the hydraulic fracture to turn when it propagates far away from the
wellbore (see Section 3.1).

2.2. Perfect slip at the steel/cement and cement/rock interfaces

In the following we develop the expressions for the stresses and displacements for the perfect slip case,
for both the in-plane and the anti-plane problems.

2.2.1. In-plane problem
Since we have a state of plane strain, u3 ¼ 0 and the field is taken to be independent of x3. Stresses and

displacements are given by Coker and Filon (1957) by

rrr ¼
1

r2
o2v

oh2
þ 1

r
ov
or

ð1Þ

rhh ¼
o2v

oh2
ð2Þ

rrh ¼ � o
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ð3Þ
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provided that

r2w ¼ 0 ð6Þ
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oh

� �
¼ r2v ð7Þ

r4v ¼ 0 ð8Þ
vðr; hÞ and wðr; hÞ are real functions to be determined.

In the extreme case where the rock/cement and cement/steel interfaces are allowed to slip freely, i.e.
without any friction developing between them, the boundary conditions are

On r ! 1: rð3Þ
11 ¼ rH ð9Þ

rð3Þ
22 ¼ rh ð10Þ

On r ¼ R3: rð2Þ
rr ¼ rð3Þ

rr ð11Þ

uð2Þr ¼ uð3Þr ð12Þ

rð2Þ
rh ¼ 0 ð13Þ

rð3Þ
rh ¼ 0 ð14Þ

On r ¼ R2: rð1Þ
rr ¼ rð2Þ

rr ð15Þ

uð1Þr ¼ uð2Þr ð16Þ

rð1Þ
rh ¼ 0 ð17Þ

rð2Þ
rh ¼ 0 ð18Þ

On r ¼ R1: rð1Þ
rr ¼ p ð19Þ

rð1Þ
rh ¼ 0 ð20Þ

We can choose as functions vðr; hÞ and wðr; hÞ the following

vð3Þðr; hÞ ¼ ðrH þ rhÞ
4

r2 � ðrH � rhÞ
4

r2 cos 2h þ Að3Þ

2
cos 2h þ Bð3Þr�2 cos 2h þ Gð3Þ ln r ð21Þ

wð3Þðr; hÞ ¼ ðrH þ rhÞh þ Að3Þr�2 sin 2h ð22Þ

vð2Þðr; hÞ ¼ Að2Þ

2
cos 2h þ Bð2Þr�2 cos 2h þ Cð2Þr2 cos 2h þ Dð2Þ

2
r4 cos 2h þ F ð2Þ

4
r2 þ Gð2Þ ln r ð23Þ

wð2Þðr; hÞ ¼ Að2Þr�2 sin 2h þ Dð2Þr2 sin 2h þ F ð2Þh ð24Þ

vð1Þðr; hÞ ¼ Að1Þ

2
cos 2h þ Bð1Þr�2 cos 2h þ Cð1Þr2 cos 2h þ Dð1Þ

2
r4 cos 2h þ F ð1Þ

4
r2 þ Gð1Þ ln r ð25Þ

wð1Þðr; hÞ ¼ Að1Þr�2 sin 2h þ Dð1Þr2 sin 2h þ F ð1Þh ð26Þ
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Inserting the right-hand side of Eqs. (21)–(26) into Eqs. (1)–(5), we get the expressions for the stresses
and displacements as

rð3Þ
rr ¼ ðrH þ rhÞ

2
þ ðrH � rhÞ

2
cos 2h � 2Að3Þr�2 cos 2h � 6Bð3Þr�4 cos 2h þ Gð3Þr�2 ð27Þ

rð3Þ
hh ¼ ðrH þ rhÞ

2
� ðrH � rhÞ

2
cos 2h þ 6Bð3Þr�4 cos 2h � Gð3Þr�2 ð28Þ

rð3Þ
rh ¼ �ðrH � rhÞ

2
sin 2h � Að3Þr�2 sin 2h � 6Bð3Þr�4 sin 2h ð29Þ

2lð3Þuð3Þr ¼ �ðrH þ rhÞ
2

r þ ðrH � rhÞ
2

r cos 2h þ 2Bð3Þr�3 cos 2h � Gð3Þr�1 þ ð1� mð3ÞÞr

	 rH

�
þ rh þ 2Að3Þr�2 cos 2h

�
ð30Þ

2lð3Þuð3Þh ¼ �ðrH � rhÞ
2

r sin 2h � ð1� 2mð3ÞÞAð3Þr�1 sin 2h þ 2Bð3Þr�3 sin 2h ð31Þ

rð2Þ
rr ¼ �2Að2Þr�2 cos 2h � 6Bð2Þr�4 cos 2h � 2Cð2Þ cos 2h þ F ð2Þ

2
þ Gð2Þr�2 ð32Þ

rð2Þ
hh ¼ 6Bð2Þr�4 cos 2h þ 2Cð2Þ cos 2h þ 6Dð2Þr2 cos 2h þ F ð2Þ

2
� Gð2Þr�2 ð33Þ

rð2Þ
rh ¼ �Að2Þr�2 sin 2h � 6Bð2Þr�4 sin 2h þ 2Cð2Þ sin 2h þ 3Dð2Þr2 sin 2h ð34Þ

2lð2Þuð2Þr ¼ 2ð1� mð2ÞÞAð2Þr�1 cos 2h þ 2Bð2Þr�3 cos 2h � 2Cð2Þ cos 2h � 2mð2ÞDð2Þr3 cos 2h

þ ð1=2� mð2ÞÞrF ð2Þ � r�1Gð2Þ ð35Þ

2lð2Þuð2Þh ¼ �ð1� 2mð2ÞÞAð2Þr�1 sin 2h þ 2Bð2Þr�3 sin 2h þ 2Cð2Þ sin 2h þ ð3� 2mð2ÞÞDð2Þr3 sin 2h ð36Þ
The relations for the field in the steel can be obtained from Eqs. (32)–(36), if the superscript ð2Þ is replaced
by ð1Þ. Inserting the formuli (27), (29), (30), (32), (34) and (35), into the boundary conditions (11)–(20), we
end up with a system of 15 linear equations with 15 unknown constants Að3Þ, Bð3Þ, Gð3Þ, AðjÞ, BðjÞ, CðjÞ, DðjÞ,
F ðjÞ, GðjÞ, j ¼ 1; 2, which is solved numerically. Note that the conditions (9) and (10) are automatically
satisfied.

2.2.2. Anti-plane problem
For the anti-plane problem, the shear stresses at infinity are r1

13 and r1
23. The stresses r13, r23 and the

displacement u3 are given by Kanninen and Popelar (1985), in terms of a complex potential f ðzÞ, as
r13 � ir23 ¼ 2f 0ðzÞ ð37Þ

u3 ¼
1

l
f ðzÞ

h
þ f ðzÞ

i
ð38Þ

The transformation formula that gives the stresses rr3, rh3 with reference to the polar coordinate system
Oðr; h; x3Þ in terms of the stresses r13, r23, is

rr3 � irh3 ¼ eih r13½ � ir23� ð39Þ
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The boundary conditions of the problem are now the following:

On r ! 1: rð3Þ
13 � irð3Þ

23 ¼ r1
13 � ir1

23 ð40Þ

On r ¼ R3: rð3Þ
r3 ¼ 0 ð41Þ

rð2Þ
r3 ¼ 0 ð42Þ

On r ¼ R2: rð2Þ
r3 ¼ 0 ð43Þ

rð1Þ
r3 ¼ 0 ð44Þ

On r ¼ R1: rð1Þ
r3 ¼ 0 ð45Þ

We choose

f 0ð3ÞðzÞ ¼ Að3Þ þ Bð3Þ

z2
ð46Þ

where the prime again denotes differentiation with respect to the complex variable z. Að3Þ can be immedi-
ately determined as

Að3Þ ¼ r1
13 � ir1

23

2
ð47Þ

from Eqs. (39) and (46). From Eqs. (41) and (47) we can extract

Bð3Þ ¼ �R2
3Að3Þ ð48Þ

The stresses and displacements in the cement and the steel annuli are zero since no anti-plane shear stresses
act on their boundaries.

3. Numerical solution for a curved crack emanating from a cased and cemented wellbore

As pointed out by Atkinson and Eftaxiopoulos (1996) and Eftaxiopoulos and Atkinson (1996), the
plane of the maximum tangential stress rhh along the cement/rock interface may be at an angle of 90� with
that of the maximum remote stress rh, as long as the pure bond case for the steel/cement and the cement/
rock interfaces is concerned. Thus the fracture may turn at 90� while it propagates away from the well-
bore, for particular rock elastic properties and particular radii of the open hole and the steel and cement
annuli.

In this section, a curved crack is considered open at the point tA of the open hole, propagating in the rock
and terminating at the point tB (Fig. 1). The numerical procedure presented below, applies to the straight
crack case as well and is similar to the one followed by Eftaxiopoulos and Atkinson (1996).

It is further assumed that the crack lies in an infinite medium, loaded by the stress field given by At-
kinson and Eftaxiopoulos (1996) for the pure bond case or the stress field found in Sections 2.2.1 and 2.2.2
of this work for the pure slip case. Although this assumption discards the interaction between the crack on
one hand and the open hole boundary, the steel/cement and the cement/rock interfaces on the other, it leads
to a reasonable approximation to the actual problem. This approximation neglects the interaction of the
crack elements with the hole and the steel/cement and the cement/rock interfaces. It corresponds to con-
sidering the dominant term in the integral equation for the crack, when this integral equation is turned into
a Fredholm equation by inverting the singular part. An indication of how accurate this approximation
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should be, can be seen by comparing results for a crack interacting with an elastic inclusion, by a complete
calculation and by the approximation method (Atkinson, 1971). For the more complex variable path crack
problem considered here, similar accuracy should be obtained.

3.1. In-plane problem

The stress and displacement field due to a dislocation in an infinite medium, at a point t in the com-
plex plane Oðx1; x2Þ, with complex Burger’s vector b1 þ ib2 referred to the coordinate system Oðx1; x2Þ or
Burger’s vector eiaðb01 þ ib02Þ referred to the coordinate system Oðx01; x02Þ, which occurs after a rotation of
Oðx1; x2Þ at an angle a (Fig. 1), is given (Tsamasphyros and Theocaris, 1982) by

UðzÞ ¼ l
piðj þ 1Þ

C
z� t

ð49Þ

WðzÞ ¼ l
piðj þ 1Þ

C
z� t

"
þ Ct

ðz� tÞ2

#
ð50Þ

where

C ¼ b1 þ ib2 ¼ eiaðb01 þ ib02Þ ð51Þ

l is the shear modulus, j ¼ 3� 4m for plain strain and m is the Poisson’s ratio. Stresses r0
11, r0

22, r0
12 and

displacements u01, u
0
2, with reference to the coordinate system Oðx01; x02Þ, are given in terms of complex

potentials UðzÞ and WðzÞ as

r0
11 þ r0

22 ¼ 2 UðzÞ
h

þ UðzÞ
i

ð52Þ

r0
22 � r0

11 þ 2ir0
12 ¼ 2e2ia½zU0ðzÞ þ WðzÞ� ð53Þ

2leiaðu01 þ iu02Þ ¼ k/ðzÞ � zUðzÞ � wðzÞ þ constant ð54Þ
From Eqs. (52) and (53) we immediately get

r0
22 þ ir0

12 ¼ UðzÞ þ UðzÞ þ e2ia½zU0ðzÞ þ WðzÞ� ð55Þ
The crack is now replaced by a distribution of dislocations of unknown density xðtÞ in order to setup the
relevant integral equation. We thus replace C in Eqs. (49) and (50) by

C ¼ eiaðtÞxðtÞdt ð56Þ
where

xðtÞ ¼ db01ðtÞ þ idb02ðtÞ
dt

ð57Þ

and aðtÞ is the angle of the inclination of the crack, at point t, with respect to the x1-axis. From Eqs. (49),
(50), (55) and (56) and by integrating over the crack line L we getZ

L

eiaðtÞxðtÞdt
z� t

þ
Z
L

e�iaðtÞxðtÞdt
z� t

þ e2iaðzÞ
Z
L

e�iaðtÞxðtÞdt
z� t

� e2iaðzÞ
Z
L

eiaðtÞðz� tÞxðtÞdt
ðz� tÞ2

¼ � piðjðjÞ þ 1Þ½½�p þ r0ðjÞ
22 ðzÞ� þ ir0ðjÞ

12 ðzÞ�
lðjÞ ð58Þ
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where j ¼ 1, 2, 3 refer to the steel, the cement and the rock respectively, r0ðjÞ
22 ðzÞ and r0ðjÞ

12 ðzÞ are the nor-
mal and shear stresses applied along the crack line, in the absence of the crack, due to the remote earth’s
stresses and the pressure p acting on the borehole. Note that p < 0 when it is compressive on the crack
edges. r0ðjÞ

22 ðzÞ and r0ðjÞ
12 ðzÞ are found by suitable transformations of the stresses that have been evaluated by

Atkinson and Eftaxiopoulos (1996) for the perfect bond case, or are presented in Section 2.2.1 of this work
for the perfect slip case.

The in-plane mode I and II CODs at any point z along the crack, can be evaluated from

b01ðzÞ þ ib02ðzÞ ¼
Z z

tB

xðtÞdt ð59Þ

if Eq. (57) is taken into account.
Let s, s1 measure arc lengths along the crack line L starting from the point jtAj ¼ R1. The total arc length

of the curve L is l. We initially make the substitutions

dz ¼ eia
�ðs1Þ ds1 ð60Þ

dt ¼ eia
�ðsÞ ds ð61Þ

a�ðsÞ ¼ aðtÞ ð62Þ

a�ðs1Þ ¼ aðzÞ ð63Þ

xðtÞ ¼ e�ia�ðsÞx�ðsÞ ð64Þ

r0 �ðjÞ
22 ðs1Þ ¼ r0ðjÞ

22 ðzÞ ð65Þ

r0 �ðjÞ
12 ðsÞ ¼ r0ðjÞ

12 ðtÞ ð66Þ

into Eqs. (58) and (59), with

x�ðsÞ ¼ db0�1 ðsÞ þ idb0�2 ðsÞ
ds

ð67Þ

b0�k ðsÞ ¼ b0kðtÞ for k ¼ 1; 2 ð68Þ

Then, Eq. (58) becomesZ l

0

x�ðsÞeia�ðsÞ dsR s1
0
eia�ðs1Þ ds1 �

R s
0
eia�ðsÞ ds

þ
Z l

0

x�ðsÞe�ia�ðsÞ dsR s1
0
e�ia�ðs1Þ ds1 �

R s
0
e�ia�ðsÞ ds

þ e2ia
�ðs1Þ

	
Z l

0

x�ðsÞe�ia�ðsÞ dsR s1
0
eia�ðs1Þ ds1 �

R s
0
eia�ðsÞ ds

� e2ia
�ðs1Þ

Z l

0

R s1
0
e�ia�ðs1Þ ds1 �

R s
0
e�ia�ðsÞ ds

� �
R s1
0
eia�ðs1Þ ds1 �

R s
0
eia�ðsÞ ds

� �2 eia
�ðsÞx�ðsÞds

¼ � piðjðjÞ þ 1Þ½½�p þ r0 � ðjÞ
22 ðs1Þ� þ ir0 � ðjÞ

12 ðs1Þ�
lðjÞ ð69Þ

Further making the substitutions

s1 ¼ ly1 ð70Þ

s ¼ ly ð71Þ
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x�ðsÞ ¼ 1

l
x��ðyÞ ð72Þ

a��ðyÞ ¼ a�ðsÞ ð73Þ

a��ðy1Þ ¼ a�ðs1Þ ð74Þ

r0 ��ðjÞ
22 ðy1Þ ¼ r0 �ðjÞ

22 ðs1Þ ð75Þ

r0 ��ðjÞ
12 ðy1Þ ¼ r0 �ðjÞ

12 ðs1Þ ð76Þ

with

x��ðyÞ ¼ db0 ��
1 ðyÞ þ idb0 � �

2 ðyÞ
dy

ð77Þ

b0 ��
k ðyÞ ¼ b0kðtÞ for k ¼ 1; 2 ð78Þ

into Eq. (69) we finally obtainZ 1

0

K1ðy1; yÞx��ðyÞdy þ
Z 1

0

K2ðy1; yÞx��ðyÞdy ¼ �rðjÞðy1Þ ð79Þ

where

K1ðy1; yÞ ¼
1

l
1

hðy1Þ � hðyÞ

2
4 �

e2ia
��ðy1Þ hðy1Þ � hðyÞ

h i
hðy1Þ � hðyÞ½ �2

3
5eia��ðyÞ ð80Þ

K2ðy1; yÞ ¼
1

l
1

hðy1Þ � hðyÞ

"
þ e2ia

��ðy1Þ

hðy1Þ � hðyÞ

#
e�ia��ðyÞ ð81Þ

hðyÞ ¼
Z y

�1

f ðyÞdy ð82Þ

f ðyÞ ¼ eia
��ðyÞ ð83Þ

rðjÞðy1Þ ¼
piðjðjÞ þ 1Þ

lðjÞ ½½�p þ r0 � �ðjÞ
22 ðy1Þ� þ ir0 � �ðjÞ

12 ðy1Þ� ð84Þ

We then make the substitution

x��ðyÞ ¼
/ðyÞ ffiffiffi

y
pffiffiffiffiffiffiffiffiffiffiffi

1� y
p ð85Þ

in Eq. (79) and getZ 1

0

K1ðy1; yÞ
/ðyÞ ffiffiffi

y
pffiffiffiffiffiffiffiffiffiffiffi

1� y
p dy þ

Z 1

0

K2ðy1; yÞ
/ðyÞ ffiffiffi

y
pffiffiffiffiffiffiffiffiffiffiffi

1� y
p dy ¼ �rðjÞðy1Þ ð86Þ

The integral equations (86) are solved numerically by using the modified Lobatto–Chebyshev numerical
quadrature rule (see e.g. Atkinson (1972) and Tsamasphyros and Theocaris (1982)). The mode I stress
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intensity factor (SIF) is calculated from Eq. (A.5) (Appendix A). A numerical method that uses a binary
search to locate an interval containing a zero of the function, then a combination of the methods of linear
interpolation, extrapolation and bisection to locate the zero precisely, is implemented via the routine
c05agf from the NAG library, for the determination of the pressure p that makes

KI ¼ KIC ð87Þ
at each propagation step. KI is the opening mode SIF and KIC is the mode I fracture toughness.

As long as a straight crack is concerned, i.e. for the pure slip case and for rocks with low elasticity
modulus in the pure bond case, the path of the fracture is known a priori. In the pure bond case, when there
is a 90� rotation of the plane of the maximum tangential stress along the cement/rock interface, the
propagating fracture will gradually turn, in order to become parallel to the plane of the maximum remote
stress rh (see Fig. 1), eventually. In such a case the path of the crack is determined by using the maximum
tangential stress criterion ahead of the crack tip.

3.2. Anti-plane shear mode crack analysis

The anti-plane analysis for the study of the crack under mode III COD, is analogous to the one pre-
sented above for the plane case. As in Atkinson and Eftaxiopoulos (1996), the stresses and displacements
for the anti-plane problem can be written in terms of a complex potential f ðzÞ as

r13 � ir23 ¼ 2f 0ðzÞ ð88Þ

u3 ¼
1

lðjÞ f ðzÞ
h

þ f ðzÞ
i

ð89Þ

For a single screw dislocation with Burger’s vector b3, at a point z ¼ t on the plane Oðx1; x2Þ, the complex
potential f ðzÞ has the form

f ðzÞ ¼ � ilðjÞb3
4p

lnðz� tÞ ð90Þ

with j ¼ 1, 2, 3 and the corresponding stresses and displacements are given by

r0
13 � ir0

23 ¼ � eiaðzÞilðjÞb3
2pðz� tÞ ð91Þ

u3 ¼
b3 tan�1 x2

x1

2p
ð92Þ

if the fundamental solution given by Hirth and Lothe (1982) is taken into account. Replacing the crack by
a continuous distribution of screw dislocations along the crack curve L, we get the integral equation

�rðjÞðzÞ ¼
Z
L

I
eiaðzÞi

z� t

� �
gðtÞdt ð93Þ

with

rðjÞðzÞ ¼ 2pr0j
23ðzÞ

lðjÞ ð94Þ

gðtÞ ¼ db3ðtÞ
dt

ð95Þ
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Note that r0j
23ðzÞ is the anti-plane stress applied along the crack path L, in the absence of the crack. It can be

deduced via suitable transformations from the stress field evaluated by Atkinson and Eftaxiopoulos (1996)
for the perfect bond case or from Section 2.2.2 of this work for the perfect slip case. A similar numerical
procedure to the one followed for the in-plane crack problem (Section 3.1) is adopted in the anti-plane case.

4. Analytical solution for a straight crack emanating from a cased and cemented wellbore

When the hydraulic fracture is straight, i.e. when Eð3Þ is relatively big for the perfect bond case and
always (See Section 5) for the perfect slip case, it is possible to solve the crack problem analytically. The
crack propagates along the plane of the minimum remote earth’s stress rh, i.e. along the x1-axis and is open
at the open hole. The analytical solution is much faster than the numerical one and it enables us to check
the accuracy of our numerical results, as long as a straight crack is concerned. We again assume that the
crack lies in an infinite medium, loaded by the appropriate stress field around the wellbore (see Sections
2.2.1 and 2.2.2).

4.1. In-plane problem

The crack, which extends from R1 to a is now replaced by a distribution of dislocations in order to setup
the relevant integral equation. Since the crack is along the x1-axis, according to Eq. (51) we set

C ¼ ixðnÞdn ð96Þ
with

xðnÞ ¼ db2ðnÞ
dn

ð97Þ

and from Eqs. (58), (96) and (97) we getZ a

R1

xðnÞdn
x1 � n

¼ rðjÞðx1Þ ð98Þ

where

rð1Þðx1Þ ¼
pðjð1Þ þ 1Þ

2lð1Þ ðrð1Þ
22 ðx1Þ � pÞ for R1 6 n6R2 ð99Þ

rð2Þðx1Þ ¼
pðjð2Þ þ 1Þ

2lð2Þ ðrð2Þ
22 ðx1Þ � pÞ for R2 6 n6R3 ð100Þ

rð3Þðx1Þ ¼
pðjð3Þ þ 1Þ

2lð3Þ ðrð3Þ
22 ðx1Þ � pÞ for R3 6 n ð101Þ

where rð1Þ
22 ðx1Þ, rð2Þ

22 ðx1Þ and rð3Þ
22 ðx1Þ are the normal stresses applied along the crack line, within the steel, the

cement and the rock respectively, in the absence of the crack, due to the remote earth’s stresses and due to
the pressure p on the borehole. rð1Þ

22 ðx1Þ, rð2Þ
22 ðx1Þ and rð3Þ

22 ðx1Þ have been found by Atkinson and Eftaxio-
poulos (1996) for the pure bond case and are given from Eqs. (28) and (33) for the pure slip case.

Making the substitutions

n ¼ a� R1

2
n0 þ aþ R1

2
ð102Þ
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x1 ¼
a� R1

2
x01 þ

aþ R1

2
ð103Þ

x0ðn0Þ ¼ xðnÞ ð104Þ

r0ðx01Þ ¼ rðx1Þ ð105Þ

we eventually arrive atZ 1

�1

x0ðn0Þdn0

x01 � n0 ¼ r0ðjÞðx01Þ ð106Þ

Inverting Eq. (106), for the case of finite stress at the point n ¼ R1, i.e. when the crack is open at that
point, we obtain

x0ðn0Þ ¼ 1

p2

1þ n0

1� n0

( )1=2 Z 1

�1

1� n0

1þ n0

( )1=2

r0ðjÞðx01Þ
x01 � n0 dx

0
1 ð107Þ

Replacing x0ðn0Þ by

x0ðn0Þ ¼ x00ðn0Þ 1þ n0

1� n0

( )1=2

ð108Þ

we get

x00ðn0Þ ¼ 1

p2

Z b

�1

1� n0

1þ n0

( )1=2

r0ð1Þðx01Þ
x01 � n0 dx01 þ

1

p2

Z c

b

1� n0

1þ n0

( )1=2

r0ð2Þðx01Þ
x01 � n0 dx01

þ 1

p2

Z 1

c

1� n0

1þ n0

( )1=2

r0ð2Þðx01Þ
x01 � n0 dx01 ð109Þ

where

b ¼ 2R2

a� R1

� V ð110Þ

c ¼ 2R3

a� R1

� V ð111Þ

V ¼ aþ R1

a� R1

ð112Þ

since r0ðx01Þ is discontinuous along r ¼ R2, r ¼ R3. Making the substitutions

b ¼ cos/1 ð113Þ

c ¼ cos/2 ð114Þ

x01 ¼ cos/ ð115Þ
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Eq. (109) becomes

x00ðn0Þ ¼ 1

p2

Z p

/1

1� cos/
cos/ � n0 r

0ð1Þðcos/Þd/ þ 1

p2

Z /1

/2

1� cos/
cos/ � n0 r

0ð2Þðcos/Þd/

þ 1

p2

Z /2

0

1� cos/
cos/ � n0 r

0ð3Þðcos/Þd/ ð116Þ

Substituting r0ð1Þðcos/Þ, r0ð2Þðcos/Þ and r0ð3Þðcos/Þ by their expressions from Atkinson and Eftaxio-
poulos (1996) for the pure bond case or from Eqs. (28) and (33) for the perfect slip case, we eventually get

x00ðn0Þ ¼ 1

2p
jð1Þ þ 1

lð1Þ Lð1Þ
1 ½I2ðn0Þ�p/1

n�
þ ½M ð1Þ

1 � p�½T0ðn0Þ�p/1
þ N ð1Þ

1 ½I�2ðn0Þ�p/1
þ Oð1Þ

1 ½I�4ðn0Þ�p/1

o�

þ jð2Þ þ 1

lð2Þ Lð2Þ
1 ½I2ðn0Þ�/1

/2

n�
þ ½M ð2Þ

1 � p�½T0ðn0Þ�/1

/2
þ N ð2Þ

1 ½I�2ðn0Þ�/1

/2
þ Oð2Þ

1 ½I�4ðn0Þ�/1

/2

o

þ jð3Þ þ 1

lð3Þ ½M ð3Þ
1

n
� p�½T0ðn0Þ�/2

0 þ N ð3Þ
1 ½I�2ðn0Þ�/2

0 þ Oð3Þ
1 ½I�4ðn0Þ�/2

0

o�
ð117Þ

where

I2ðn0Þ ¼
Z ð1� cos/Þðcos/ þ V Þ2

cos/ � n0 d/ ð118Þ

T0ðn0Þ ¼
Z ð1� cos/Þ

cos/ � n0 d/ ð119Þ

I�2ðn0Þ ¼
Z ð1� cos/Þ

ðcos/ � n0Þðcos/ þ V Þ2
d/ ð120Þ

I�4ðn0Þ ¼
Z ð1� cos/Þ

ðcos/ � n0Þðcos/ þ V Þ4
d/ ð121Þ

The indefinite integrals in Eqs. (118)–(121) have been evaluated by elementary analytical means.
For the pure bond case

LðjÞ
1 ¼ 4

a� R1

2

� �2

CðjÞ ð122Þ

N ðjÞ
1 ¼ F ðjÞ a� R1

2

� ��2

ð123Þ

OðjÞ
1 ¼ GðjÞ a� R1

2

� ��4

ð124Þ

M ðjÞ
1 ¼ 2AðjÞ þ DðjÞ ð125Þ

for j ¼ 1, 2, 3. Constants AðjÞ, CðjÞ, DðjÞ, F ðjÞ, GðjÞ are given by Atkinson and Eftaxiopoulos (1996).
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For the pure slip case

M ð3Þ
1 ¼ rh ð126Þ

N ð3Þ
1 ¼ � Gð3Þ a� R1

2

� ��2

ð127Þ

Oð3Þ
1 ¼ 6Bð3Þ a� R1

2

� ��4

ð128Þ

LðjÞ
1 ¼ 6DðjÞ a� R1

2

� �2

ð129Þ

M ðjÞ
1 ¼ 2CðjÞ þ F ðjÞ

2
ð130Þ

N ðjÞ
1 ¼ � GðjÞ a� R1

2

� ��2

ð131Þ

OðjÞ
1 ¼ 6BðjÞ a� R1

2

� ��4

ð132Þ

with j ¼ 1, 2. Constants BðjÞ, CðjÞ, DðjÞ, GðjÞ with j ¼ 1, 2, 3 are found by solving a system of linear equations
(see end of Section 2.2.1).

4.2. Analytical solution of the anti-plane problem

For a straight crack, Eq. (93) reduces toZ a

R1

gðnÞdn
x1 � n

¼ �rðx1Þ ð133Þ

with rðx1Þ given from Eq. (94). That stress is given by Atkinson and Eftaxiopoulos (1996) for the pure bond
case and from Section 2.2.2 for the pure slip case. The solution of Eq. (133) gives

g00ðn0Þ ¼ 2

p
1

lð1Þ M ð1Þ
2 ½T0ðn0Þ�p/1

n�
þ N ð1Þ

2 ½I�2ðn0Þ�p/1

o
þ 1

lð2Þ M ð2Þ
2 ½T0ðn0Þ�/1

/2

n
þ N ð2Þ

2 ½I�2ðn0Þ�/1

/2

o

þ 1

lð3Þ M ð3Þ
2 ½T0ðn0Þ�/2

0

n
þ N ð3Þ

2 ½I�2ðn0Þ�/2

0

o�
ð134Þ

with

N ðjÞ
2 ¼ 2I½BðjÞ� a� R1

2

� ��2

ð135Þ

M ðjÞ
2 ¼ 2I½AðjÞ� ð136Þ

for j ¼ 1, 2, 3. AðjÞ, BðjÞ for the pure bond case are given by Atkinson and Eftaxiopoulos (1996).
For the pure slip case, we have the same solution form as Eq. (134). Due to the freely slipping interfaces,

the only nonzero stresses are in the rock with the anti-plane stresses in the cement and the steel being zero.
Hence N ð3Þ

2 ,M ð3Þ
2 are given from Eqs. (135) and (136) respectively, while Að3Þ and Bð3Þ are defined by Eqs. (47)

and (48).
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5. Results

The Young’s moduli and Poisson’s ratios that we used for the steel and the cement were Eð1Þ ¼ 200 GPa,
mð1Þ ¼ 0:27 and Eð2Þ ¼ 10 GPa, mð2Þ ¼ 0:2 respectively. The Young’s modulus of the rock was either Eð3Þ ¼ 20
or 2 GPa and Poisson’s ratio of the rock was mð3Þ ¼ 0:2. The remotely applied earth in-plane stresses were
rH ¼ �40 MPa and rh ¼ �20 MPa and the far field anti-plane stresses, developing due to a possible in-
clination of the borehole, were r1

13 ¼ 10 MPa and r1
23 ¼ 5 MPa (tensile stresses are taken to be positive).

Radii R1 ¼ 12:7 cm, R2 ¼ 14 cm and R3 ¼ 17:8 cm were assigned to the open hole, the steel/cement and the
cement/rock interfaces respectively. In all cases that we have studied we have assumed that the pressure is
constant along the crack length. The crack was considered to be open at the casing. The initial crack length
was taken as 1:00001ðR3 � R1Þ and the length of the fracture at the final propagation step was 7R3. The
normalized fracture toughness of the rock is taken as KIC ¼ ðKIC=ðjrhjðR3Þ1=2ÞÞ ¼ 0:1. During the propa-
gation process, we required that the mode I opening displacement of the crack remains greater than 1 mm,
all along it. If a smaller normal jump was encountered while KI PKIC, then a bigger pressure was sought in
order to make the jump at that point equal to 1 mm. A variable number of collocation and integration
points, increasing with the crack extension, was used at each propagation step.

5.1. Results for the stress field around a cased and cemented wellbore with purely bonded steel/cement and
cement/rock interfaces

Results for this case have been presented by Atkinson and Eftaxiopoulos (1996). In that paper, it was
observed that for low Young’s moduli of the rock (e.g. 2, 3 and 4 GPa), the plane of the maximum tan-
gential stress rhh along the cement/rock interface, is rotated at 90� with respect to the plane of the maxi-
mum remote stress rh. Such an observation has been depicted in Fig. 2. The pressure in the well was taken

Fig. 2. Variation of the normalized tangential stress rhh ¼ rhh=jpj versus the angle h with Eð3Þ ¼ 2 GPa for r ¼ R2 (––) and for

r ¼ R3 (- - -).
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p ¼ 35 MPa. For larger values of Young’s moduli of the rock, the plane of the maximum rhh along the
cement/rock interface, remained parallel to the plane of rh. Atkinson and Eftaxiopoulos (1996) developed a
dimensionless quantity, depending on the Young’s moduli E and the Poisson’s ratios m of the rock, the steel
and the cement and on the radii R1, R2 and R3, that determines whether the plane of the maximum rhh along
the cement/rock interface, is at p=2 or at 0� with the x1-axis (see Fig. 1). According to Atkinson and Ef-
taxiopoulos (1996), the two latter orientations are the only possible ones for the plane of the maximum rhh

along the cement/rock interface, for all Young’s moduli of rocks. Hence, according to that analysis, we
assume in this paper that an initial radial fracture pre-exists within the casing and the cement annuli, either
at an angle of 90� or at 0� with the x1-axis.

5.2. Results for the stress field around a cased and cemented wellbore with purely slipping steel/cement and
cement/rock interfaces

The variation of the normalized tangential stress rhh ¼ rhh=jpj with respect to h, along the circular in-
terfaces r ¼ R1, r ¼ R2 and r ¼ R3, is shown in Fig. 3, for two kinds of rock with E3 ¼ 20 and 2 GPa. Again
the pressure in the well was taken p ¼ 35 MPa. It is evident that the plane of the maximum tangential stress,
along the fluid–steel, steel–cement and cement–rock interfaces, remains parallel to the plane of the maxi-
mum (in algebraic value) remotely applied normal stress rh, for both kinds of rock. This was also the case in
several other examples that we tried, with bigger values for the elasticity modulus of the rock. Such a result
is different from the corresponding result outlined in Section 5.1 for the perfect bond case, where the plane
of the maximum rhh along the cement/rock interface may rotate at 90� with respect to the remote stress rh.
For the perfect bond case, Atkinson and Eftaxiopoulos (1996) used the ‘equivalent inclusion’ approach,
where the open hole, the steel and the cement annuli were replaced by a single ‘equivalent’ inclusion. Thus a
rule of thumb was developed, which related the elastic properties of the rock with the turning of the crack.

Fig. 3. Variation of the normalized tangential stress rhh versus the angle h, with Eð3Þ ¼ 2 GPa for r ¼ R2 (––), r ¼ R3 (- - -).
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Such a simplified model was not possible for the perfect slip case, presumably because of the slipping that
occurs between the steel, the cement and the rock.

5.3. Results for the hydraulic fracture propagation from a wellbore with purely bonded interfaces

In Fig. 4 the crack path corresponding to two different rock properties is illustrated. When Eð3Þ ¼ 2 GPa
the preferable angle for the initial crack, is p=2, due to the near wellbore effects caused by the presence of
the steel and the cement (Atkinson and Eftaxiopoulos, 1996). Nevertheless, far from the hole the near
wellbore effects decay and the fracture tends to orientate itself perpendicularly to rh. The turning process
starts immediately after the crack enters the rock. On the other hand, when Eð3Þ ¼ 20 GPa, the plane where
the peak hoop stress rhh acts, is not changed near the well and the crack propagates along a straight line.

The normalized pressure p ¼ p=rh versus the normalized propagation length lðkÞ ¼ lðkÞ=R3 is shown in
Fig. 5. The pressures required for the propagation of the curved crack (Eð3Þ ¼ 2 GPa, dashed line) are larger
than the ones needed for the extension of the straight one (Eð3Þ ¼ 20 GPa, solid line and dashed-dotted
lines). The turning of the fracture, may make the requirement for a minimum mode I jump b02ðzÞ ¼ 1 mm
more difficult to achieve, than in the straight crack case (see Fig. 6). Thus the pressure is increased.
Pressures in both cases tend to values close to rh for long cracks, since KIC ¼ 0:1 i.e. close to zero. The
agreement between the numerical results (solid line) and the analytical results (dashed-dotted line) for a
straight crack (Eð3Þ ¼ 20 GPa) is good. The kink in the beginning of the solid and the dashed-dotted lines,
is due to the requirement for a minimum mode I jump b02ðzÞ ¼ 1 mm at the first propagation step.

Fig. 6 depicts the variation of the normalized mode I opening displacement b02ðzÞ of the crack with re-
spect to the normalized arc length sn (see Eq. (71)) along it, for the two cracks shown in Fig. 4, at the last
propagation step. The most significant changes take place close to the wellbore presumably as a result of the
presence of the cement and the casing. Close to the open hole (sn ¼ 0) the opening of the crack is reduced,
presumably due to the presence of the steel casing. Note that a negative jump b02ðzÞ was encountered close to
sn ¼ 0 while KI PKIC, in the curved crack case. Subsequently a bigger pressure, which made b02ðzÞ ¼ 1 mm
at that point, was found. A significant reduction in the COD occurs in the curved crack case (dashed line)
between sn ¼ 0:5 and 1. This is possibly due to the severe turning of the crack that occurs (see Fig. 4) at such
distances from the wellbore.

The fluctuation of the normalized shear opening displacement b01ðzÞ of the crack versus the normalized
arc length sn, is presented in Fig. 7 for the cracks of Fig. 4. The most severe mode II crack deformation
develops close to the wellbore where the most significant turning of the crack takes place.

Fig. 4. Fracture propagation from a cased, cemented and inclined wellbore into two different rocks, having elasticity moduli Eð3Þ ¼ 20

GPa (––) and Eð3Þ ¼ 2 GPa (- - -) respectively.
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Fig. 5. The normalized pressure p ¼ p=rh versus the normalized crack length lðkÞ ¼ lðkÞ=R3 for two different rocks with Eð3Þ ¼ 20 GPa

(solid line for the numerical result and dashed-dotted line for the analytical result) and Eð3Þ ¼ 2 GPa (dashed line for the numerical

result).

Fig. 6. The normalized mode I COD b02ðzÞ ¼ b02ðzÞ=R3 versus the normalized arc length sn ¼ sn=R3, at the final propagation step, for two

different rocks with Eð3Þ ¼ 20 GPa (solid line for the numerical result and dashed-dotted line for the analytical result) and Eð3Þ ¼ 2 GPa

(dashed line for the numerical result).
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Finally, in Fig. 8 the dependence of the normalized mode III COD b3ðzÞ on the normalized arc length sn,
at the final propagation step, is monitored. The effect of the casing and the cement is mostly sensed when we
have a small––relatively to the steel and the cement––elasticity modulus Eð3Þ ¼ 2 GPa for the rock. Since the
amount of mode III COD, should give a qualitative measure of the tendency of a 3D crack surface to twist,
Fig. 8 indicates that (especially for Eð3Þ ¼ 2 GPa) the twisting process would start further from the wellbore.

5.4. Results for the hydraulic fracture propagation from a wellbore with purely slipping interfaces

When slipping interfaces are considered, there is no turning of the plane of the maximum tangential
stress, along the cement/rock interface, if the Young’s modulus of the rock is changed (see Fig. 3). Hence
the hydraulic fracture is always straight. In Fig. 9 the pressure variation with respect to the propagation
length is shown, for two different rocks with Eð3Þ ¼ 20 and 2 GPa. A comparison of the pressure profile for a
straight crack (i.e. for Eð3Þ ¼ 20 GPa), for the pure slip (Fig. 9) and the pure bond (Fig. 5) cases, shows that
during the first propagation step, a bigger pressure is required for the pure slip case.

In Figs. 10 and 11 the variation of the normalized opening mode and anti-plane shear mode jumps, along
the crack at the final propagation step, are depicted. Close to the open hole there is a reduction in the
magnitude of the mode I COD, due to the presence of the steel casing which is much stiffer than the cement
and the rock. Comparing results for the mode I COD, between the pure bond case (Fig. 6) and the pure slip
case (Fig. 10), for Eð3Þ ¼ 20 GPa, we notice that the crack opening is almost the same along the crack, for
both cases. The anti-plane shear mode opening, vanishes inside the cement and the steel annuli because
of the purely slipping cement/rock and steel/cement interfaces (see Section 4.2). Anti-plane CODs are
roughly the same for the pure bond and the pure slip cases (Figs. 8 and 11), for a straight crack, i.e. for
Eð3Þ ¼ 20 GPa.

Since the crack is always straight in the pure slip case, lying along the plane of the maximum remote
stress rh, no in-plane shear mode crack opening develops.

Fig. 7. The normalized mode II COD b01ðzÞ ¼ b01ðzÞ=R3 of the crack versus the normalized arc length sn ¼ sn=R3, at the final propagation

step, for two different rocks with Eð3Þ ¼ 20 GPa (––) and Eð3Þ ¼ 2 GPa (dashed line for the numerical result).
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Fig. 9. The normalized pressure p ¼ p=rh versus the normalized crack length lðkÞ ¼ lðkÞ=R3 for two different rocks, with Eð3Þ ¼ 20 GPa

(solid line for the numerical result and dashed line (long dashes) for the analytical result) and Eð3Þ ¼ 2 GPa (dashed-dotted line for the

numerical result and dashed line (short dashes) analytical result).

Fig. 8. The normalized mode III COD b3ðzÞ ¼ b3ðzÞ=R3 versus the normalized arc length sn ¼ sn=R3 during the last propagation step,

for two different rocks with Eð3Þ ¼ 20 GPa (solid line for the numerical result and dashed-dotted line for the analytical result) and

Eð3Þ ¼ 2 GPa (dashed line for the numerical result).

C. Atkinson, D.A. Eftaxiopoulos / International Journal of Solids and Structures 39 (2002) 1621–1650 1641



Fig. 10. The normalized mode I COD b02ðzÞ ¼ b02ðzÞ=R3 versus the normalized arc length sn ¼ sn=R3, at the final propagation step, for

two different rocks with Eð3Þ ¼ 20 GPa (solid line for the numerical result and dashed line (long dashes) for the analytical result) and

Eð3Þ ¼ 2 GPa (dashed-dotted line for the numerical result and dashed line (short dashes) for the analytical result).

Fig. 11. The normalized mode III COD b03ðzÞ ¼ b03ðzÞ=R3 versus the normalized arc length sn ¼ sn=R3, at the final propagation step, for

two different rocks with Eð3Þ ¼ 20 GPa (solid line for the numerical result and dashed line (long dashes) for the analytical result) and

Eð3Þ ¼ 2 GPa (dashed-dotted line for the numerical result and dashed line (short dashes) for the analytical result).
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5.5. Results for a starter crack with varying orientation or with varying elastic modulus of the rock

A straight starter crack, i.e. a crack at the first propagation step, whose length is 1:00001ðR3 � R1Þ, is
considered in this subsection. The crack is either parallel to the x1-axis and the elastic modulus of the rock
varies from 2 to 50 GPa or the orientation of the crack varies from 0 to p=2 with respect to the x1-axis while
the elastic modulus of the rock remains constant and equal to 20 GPa.

In Figs. 12–14 the variations of the pressure, the mode I COD at r ¼ R1 and the mode III COD at r ¼ R1

with respect to varying elastic modulus of the rock Eð3Þ, for a starter crack parallel to the x1-axis are shown.
The pressure needed to propagate the crack further is greater in the pure slip case than in the pure bond
case. In both cases the pressure decreases with increasing Eð3Þ (Fig. 12). Analogous remarks can be made for
the mode I COD (Fig. 13). Note that in the pure bond case, the crack tends to close for Eð3Þ > 8:5 GPa, but
a bigger pressure is sought such that we have the minimum mode I opening b2 ¼ 1 mm at r ¼ R1. Regarding
the mode III COD (Fig. 14), it increases with increasing Eð3Þ, as long as the pure bond case is concerned. In
the pure slip case b3 ¼ 0 mm.

In Figs. 15–18 the variations of the pressure, the mode I COD at r ¼ R1, the mode II COD at r ¼ R1 and
the mode III COD at r ¼ R1 with respect to varying angle h between the straight starter crack and the x1-
axis, are shown. The pressure is greater for the pure slip case than for the pure bond one, for approximately
h < 45�, while the opposite happens for h > 45� (Fig. 15). Monotonically increasing pressure develops in
the pure bond case while in the pure slip case does not. The kink in the graph for the pure slip case is due to
the need for a sudden increase in pressure in order to avoid a negative mode I COD, i.e. in order to ensure
that the minimum b02 ¼ 1 mm.

Fig. 16 indicates that the mode I COD decreases as the starter crack rotates, approaching the plane of
the minimum remote stress rH. Values for the pure slip case are generally bigger than those for the pure

Fig. 12. The normalized pressure p ¼ p=rh versus the elastic modulus Eð3Þ of the rock for a starter crack parallel to the x1-axis (solid line

for the analytical result––pure bond case, dashed line (short dashes) for the numerical result––pure bond case, dashed line (very short

dashes) for the analytical result––pure slip case, dashed line (long dashes) for the numerical result––pure slip case).
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bond case. Due to negative CODs that were encountered for low angles h, the required opening of b02 ¼
1 mm is reached at low angles h for the pure bond case.

Fig. 13. The normalized mode I COD b02ðzÞ ¼ b02ðzÞ=R3 versus the elastic modulus Eð3Þ of the rock for a starter crack parallel to the

x1-axis (solid line for the analytical result––pure bond case, dashed line (short dashes) for the numerical result––pure bond case, dashed

line (very short dashes) for the analytical result––pure slip case, dashed line (long dashes) for the numerical result––pure slip case).

Fig. 14. The normalized mode III COD b03ðzÞ ¼ b03ðzÞ=R3 versus the elastic modulus Eð3Þ of the rock for a starter crack parallel to the

x1-axis (solid line for the analytical result––pure bond case, dashed line (short dashes) for the numerical result––pure bond case).
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Fig. 15. The normalized pressure p ¼ p=rh versus the angle h between the straight starter crack and the x1-axis, with Eð3Þ ¼ 20 GPa

(solid line for the analytical result––pure bond case, dashed line (short dashes) for the numerical result––pure bond case, dashed line

(very short dashes) for the analytical result––pure slip case, dashed line (long dashes) for the numerical result––pure slip case).

Fig. 16. The normalized mode I COD b02ðzÞ ¼ b02ðzÞ=R3 at r ¼ R1, versus the angle h between the straight starter crack and the x1-axis,
with Eð3Þ ¼ 20 GPa (solid line for the analytical result––pure bond case, dashed line (short dashes) for the numerical result––pure bond

case, dashed line (very short dashes) for the analytical result––pure slip case, dashed line (long dashes) for the numerical result––pure

slip case).
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Fig. 17 indicates that the mode II COD at r ¼ R1 is bigger in the pure bond case than in the pure slip
case, for all angles h.

Fig. 17. The normalized mode II COD b01ðzÞ ¼ b01ðzÞ=R3 at r ¼ R1 versus the angle h between the straight starter crack and the x1-axis,
with Eð3Þ ¼ 20 GPa (solid line for the analytical result––pure bond case, dashed line (short dashes) for the numerical result––pure bond

case, dashed line (very short dashes) for the analytical result––pure slip case, dashed line (long dashes) for the numerical result––pure

slip case).

Fig. 18. The normalized mode III COD b03ðzÞ ¼ b01ðzÞ=R3 at r ¼ R1 versus the angle h between the straight starter crack and the x1-axis,
with Eð3Þ ¼ 20 GPa (solid line for the analytical result––pure bond case, dashed line for the numerical result––pure bond case).
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Changing signs characterize the variation of the mode III COD with h (Fig. 18). If one assumes that the
magnitude of b03 is a measure of the tendency of the crack to twist, then opposite twisting angles may be
expected for different angles h of the starter crack with the x1-axis.

6. Conclusions

A plane 2D model for the problem of hydraulic fracturing from a cased and cemented wellbore has been
developed in this paper. Anti-plane calculations have also been pursued in an attempt to capture the
qualitative features of the twisting of a real 3D crack surface. Two extreme boundary condition cases have
been considered; pure bond and pure slip between the steel/cement and the cement/rock interfaces. Con-
stant pressure is assumed along the hydraulic fracture. Analytical results for the tangential stress rhh along
the steel/cement and the cement/rock interfaces have been obtained. Numerical and analytical results for
the pressure profile in the crack and for the mode I, II and III CODs have been presented.

The main results indicate that

• A rotation of 90� of the plane of the maximum tangential stress rhh happens between the steel/cement
and the cement/rock interfaces, in the pure bond boundary condition case, for rocks with low Young’s
modulus (e.g. 2, 3 and 4 GPa). The same conclusion was also reached by Atkinson and Eftaxiopoulos
(1996). In the pure slip case no such rotation is observed and the plane of the maximum tangential stress
rhh remains parallel to the plane of the maximum remote stress rh, along both the steel/cement and the
cement–rock interfaces, independent from the Young’s modulus of the rock. Since we place the pre-
existing initial radial crack along the plane of the maximum rhh on the cement/rock interface, the hydrau-
lic fracture may turn while propagating away from the wellbore in the pure bond case. In the pure slip
case the fracture remains straight for any value of the Young’s modulus of the rock.

• During the first propagation step, a bigger pressure is needed for the crack extension in the pure slip case
than in the pure bond case, as long as a straight crack is concerned. Hence the not perfectly bonded steel
and cement annuli, may not necessarily facilitate the first propagation step.

• The mode I COD at the wellbore, of a long straight crack, is roughly the same for both the pure bond
and the pure slip cases. However in the pure slip case, such an opening increases as the Young’s modulus
of the rock decreases. Along the turning part of a curved crack the mode I COD is reduced, thus hin-
dering fluid flow.

• Along a long straight fracture the mode III COD remains roughly unaltered for both the pure bond and
the pure slip cases. Since we expect that the value of the mode III COD should give a qualitative measure
of the tendency of a 3D crack surface to twist, the twisting process may not be affected by the boundary
conditions at the wellbore. On the contrary the twisting process may be more severe for more compiant
rocks.

• For a starter crack, parallel to the plane of the maximum remote stress rh, the pressure and the mode I
COD at the hole (r ¼ R1) decrease as the elastic modulus of the rock increases. Bigger values for both the
pressure and the mode I COD at the hole (r ¼ R1), develop in the pure slip case than in the pure bond
case. On the contrary, the mode III COD at r ¼ R1 increases with increasing Eð3Þ, possibly indicating a
more severe tendency for twist of the fracture in stiffer rocks.

• For a starter crack, inclined at an angle h with respect to the x1-axis and for a rock with Eð3Þ ¼ 20 GPa,
the pressure is greater in the pure slip case than in the pure bond case for h < 45�. The opposite happens
for h > 45�. The mode I COD at the hole (r ¼ R1) decreases as the starter crack rotates. Values for the
pure slip case are generally bigger than those for the pure bond case. The mode II COD at r ¼ R1 is big-
ger in the pure bond case than in the pure slip case, for all angles h. Changing signs in the mode III COD
evolution may indicate opposite angles of twist for a real 3D crack.
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7. Discussion—limitations

The 2D model presented in this paper, for the propagation of a hydraulic fracture from a cased and
cemented wellbore, cannot obviously capture all the features of the physical 3D phenomenon. Our model
should be adequate, when the borehole axis is parallel to one of the far field principal axes, i.e. when the 3D
fracture surface does not twist and remains parallel to the borehole axis. In that case our 2D plane strain
approach should be sufficient and the anti-plane analysis is not needed. However, when the borehole axis is
not parallel to one of the far field principal axes, we cannot address properly the turning and twisting
processes of the 3D fracture surface, as it progressively reorients itself parallel to the plane of the far field
maximum stress. In fact, the creation of multiple smaller fractures starting from a 3D crack surface during
the twisting process, complicates even a 3D analysis. In this work, we calculate the mode III COD of the
plane crack, which may give us a qualitative measure of the tendency of a real 3D crack to twist.

Our model does not also deal with perforations, which are used for the communication of the cased
wellbore with the pay zone (i.e. the rock that contains the oil). The perforations are also used to trigger the
initiation of the fracture. There are cases when a small starter fracture initiates from each perforation and
all these flaws join up to form a single bigger crack further from the wellbore. Also, the perforations may be
placed at regular angular intervals around the wellbore, since the location of the crack initiation is not
known a priori. In our model we incorporate a single radial preexisting starter crack, as long as the width of
the steel and cement annuli. We place this starter crack parallel to the plane of the maximum rhh that
develops on the cement/rock interface and thus we have the opportunity to study both curved and straight
fracture propagations.

Appendix A. Evaluation of the in-plane mode I stress intensity factor and of the CODs

For the numerical procedure we have evaluated the SIF from displacement relations and for the ana-
lytical procedure from stress relations.

A.1. Numerical solution

From Eq. (57), the jump in the displacement at a point z along the crack can be written as

b01ðzÞ þ ib02ðzÞ ¼
Z z

tB

xðtÞdt ðA:1Þ

Alternatively we can write

b0 ��
1 ðy1Þ þ ib0 � �

2 ðy1Þ ¼
Z y1

1

/ðyÞ ffiffiffi
y

pffiffiffiffiffiffiffiffiffiffiffi
1� y

p dy ðA:2Þ

Taking the limit y1 ! 1�, we get

b0 ��
1 ð1� �Þ � ib0 � �

2 ð1� �Þ ¼ �/ð1Þ
ffiffiffiffiffi
2�

p
ðA:3Þ

where � ! 0. From Kanninen and Popelar (1985), Eqs. (84) and (86) it can also be deduced that

b0 ��
1 ð1� �Þ � ib0 � �

2 ð1� �Þ ¼ � iðjðjÞ þ 1Þ
ffiffi
l

p

2l
ffiffiffi
p

p ½K 0
I þ iK 0

II�
ffiffi
�

p
ðA:4Þ

From Eqs. (A.3) and (A.4) we find
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K 0
I þ iK 0

II ¼ � 2
ffiffiffi
2

p
i

ffiffiffi
p

p
lðjÞffiffi

l
p

ðjðjÞ þ 1Þ
/ð1Þ ðA:5Þ

The in-plane CODs can be obtained from Eq. (A.2) by applying the numerical quadrature scheme that was
used for the solution of Eq. (86). The mode III jump of the crack can be deduced from Eq. (A.2) if /ðyÞ is
replaced by wðyÞ.

A.2. Analytical solution

From Eq. (97), the displacement jump across the crack flanks, at any point x1 along the crack, can be
evaluated from the relationZ x1

a
xðxÞdx ¼ b2ðx1Þ ðA:6Þ

or via the relation

ða� R1Þ
2

Z 0

/2

x00ðcoswÞð1þ coswÞdw ¼ b2ðx1Þ ðA:7Þ

where

cos/2 ¼ x01 ðA:8Þ

x1 ¼
a� R1

2
x01 þ

aþ R1

2
ðA:9Þ

cosw ¼ n0 ðA:10Þ

n ¼ a� R1

2
n0 þ aþ R1

2
ðA:11Þ

The integral in Eq. (A.7) was evaluated by using the trapezium rule since the discrete values of the density
are known from Eqs. (134) and (117).

From Eqs. (98), (101)–(105) we can express the stress, generated by the distribution of dislocations that
we have already calculated from Eq. (117) near the crack tip, outside the crack as

r00ð3Þð1þ �Þ ¼ � 4lð3Þ

jð3Þ þ 1

x00ð1Þffiffiffiffiffi
2�

p ðA:12Þ

where

r00ðx01Þ ¼ rðx1Þ ðA:13Þ

From the definition of the opening mode stress intensity factor KI

KI ¼ lim
x1!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � aÞ

p
rð3Þ
22 ðx1Þ ðA:14Þ

and from Eqs. (A.12) and (A.14), we finally obtain

KI ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� R2Þ

p lð3Þ

jð3Þ þ 1
gð1Þ ðA:15Þ
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